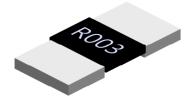


SCMM2512S4 Series, Current Sensor Resistor (Lead / Halogen Free)

The history of revision change for the specification


Date	Revision	Changes
2022/3/15	A0	New Approval standard (POYIN)
2022/4/18	A1	Add Marking (YT)
2022/7/11	A2	Add two descriptions of care note for storage of Care note (CH)
2023/2/24	A3	Remove ESD test item (CH)

SCMM2512S4 Series, Current Sensor Resistor (Lead / Halogen Free)

Features / Applications :

- High power rating is up to 4W
- Welding construction; excellent long-term stability
- Automotive applications & Current Sensor Resistor
- Suggested mounting on DBC/IMS/FR4 substrate
- RoHS compliant

Electrical Specifications :

Characteristics ¹	Feature		
Power Rating ²	4 W		
Resistance Value	3 mΩ		
Temperature Coefficient of Resistance (25/125°C)	±50 ppm/°C		
Operation Temperature Range	-65°C∼+170°C		
Resistance Tolerance	\pm 1%		
Maximum Working Voltage (V)	(P*R) ^{1/2}		

1. For detail information refer to the table on page 3 P/N list

2. For resistors are operated at terminal temperature in excess of 100°C, the maximum load shall be derated in accordance with the following curve.

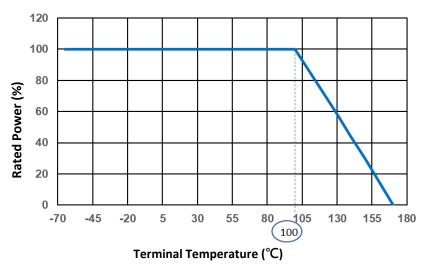
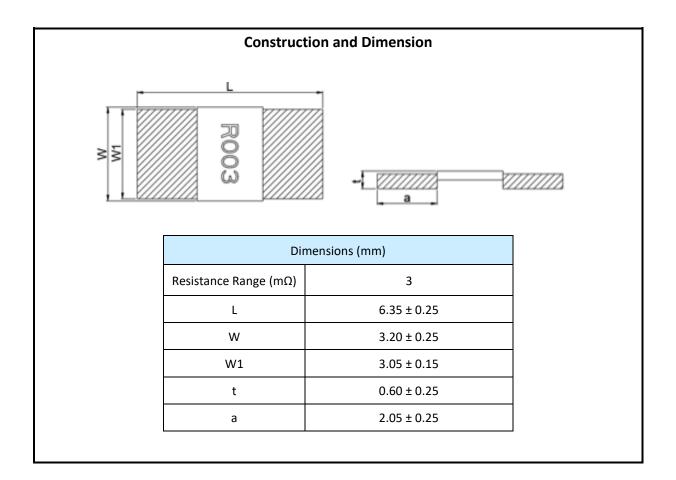
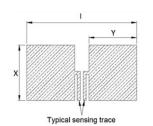



Figure 1. : Power derating curve at terminal temperature


DOCUMENT : CYNPW-223-010 Page : 2 REVISION : A3

Outline Drawing :

Recommended Solder Pad Dimensions

Resistance Range		Dimensions	
mΩ	X (mm)	Y (mm)	I (mm)
3	3.7	3.2	7.35

SCMM	2512	S		_		
(1)	(2)	(3)	(4)		(5)	(6)

Note :

- (1) Series No.
- (2) Size
- (3) Terminal Type : S = Short terminal
- (4) Power Rating : 4 = 4W
- (5) Resistance value : R003 = 0.003Ω
- (6) Tolerance : $F = \pm 1\%$, $G = \pm 2\%$, $J = \pm 5\%$

P/N list :

P/N	R value	TCR	Power Rating		Tolerance	
P/N	(mΩ)	(ppm/K)	(W)	1%	2%	5%
SCMM2512S4-R003*	3.0	±50	4	\checkmark		

* Note : Other values and tolerance would be available, please contact Cyntec.

Electrical

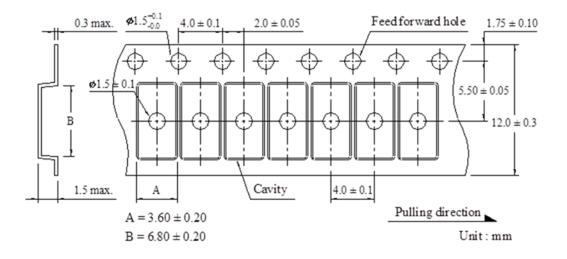
Item	Specification and Requirement	Test Method
Temperature Coefficient (TCR)	As follow specification	JIS-C-5201 +25°C / +125°C.
Short Time Overload	$ riangle {R}:\pm$ 0.5% Without damage by flashover, spark, arcing, burning or breakdown	JIS-C-5201-1 4.13 2.5 x rated power for 5 seconds.
Insulation Resistance	Over 100 M Ω on Overcoat layer face up	JIS-C-5201-1 4.6 100V _{DC} for 60 +10/-0 seconds
Voltage Proof	$\triangle R: \pm 1\%$ Without damage by flashover, spark, arcing, burning or breakdown	JIS-C-5201-1 4.7 400V _{AC} (rms.) for 60 +10/ -0 seconds

Mechanical

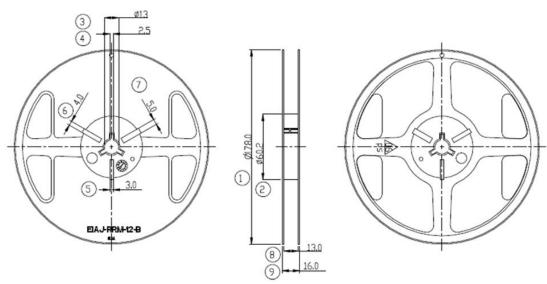
ltem	Specification and Requirement	Test Method
Solderability	The surface of terminal immersed shall be minimum of 95% covered with a new coating of solder	J-STD-002 Method B category 3 245±5°C for 5±0.5 seconds.
Resistance to Solder	$\triangle R: \pm 0.5\%$	MIL-STD-202 Method 210
Heat	Without distinct damage in appearance	260 \pm 5°C for 10 \pm 1 seconds.
Board Flex	$ riangle R:\pm$ 1.0% Without mechanical damage such as break.	AEC-Q200-005 Bending value: 2 mm for 60 ± 1 seconds.
Vibration	$ riangle R:\pm 0.5\%$ Without distinct damage in appearance	MIL-STD-202 Method 204 5G's for 20 minutes, 12 cycles each of 3 orientations. Test from 10- 2000Hz.

Mechanical Shock	$ riangle R:\pm$ 0.5% Without distinct damage in appearance	MIL-STD-202 Method 213 100G's peak value, 6ms, Half-sine waveform, 12.3ft/sec.
Terminal Strength	$ riangle { m R}:\pm$ 1%	AEC-Q200-006
(SMD)	Without mechanical damage such as break.	Force of 1.8Kg for 60 seconds.

Endurance


Item	Specification and Requirement	Test Method
Temperature Cycling	$ riangle R:\pm$ 0.5% Without distinct damage in appearance	JESD22 Method JA-104 -55°C to 150°C /1000cycle 30 min maximum dwell time at each temperature on FR4(PCB).
Biased Humidity	$ riangle R:\pm$ 0.5% Without distinct damage in appearance	MIL-STD-202 Method 103 1000 hours, 85°C/85%R.H, applied for 10% rated power.
Operational Life	$ riangle { m R}:\pm$ 1.0% Without distinct damage in appearance	MIL-STD-202 Method 108 70°C, 100% rated power 1.5 hours ON, 0.5 hours Off For total 1000 hours
High Temperature Storage	$\triangle R:\pm$ 1.0% Without distinct damage in appearance	MIL-STD-202 Method 108 170°C for 1000 hours.
Moisture Resistance	$\triangle R:\pm$ 0.5% Without distinct damage in appearance	MIL-STD-202 Method 106 65°C /90-100%RH, unpowered, 7b not required

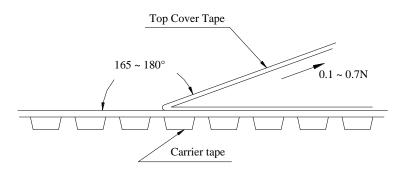
Note : Measurement at 24 ± 4 hours after test conclusion for all reliability tests-parts.



PACKAGING DESCRIPTIONS :

Dimensions :

Reel dimensions :



Symbol	1	2	3	4	5	6	7	8	9
Sizo	178.0	60.2	13.0	2.5	3.0	4.0	5.0	13.0	16.0
Size	±1	±0.5	±0.5	+0.5/-0	+0.5/-0	+0.5/-0	+0.5/-0	±0.5	±0.15

Peel Strength of Top Cover Tape :

The peel speed shall be about 300mm/min and the peel force of top cover tape shall between 0.1 to 0.7N

Number of Taping :

2,000 pieces / reel

Label Marking :

The following items shall be marked on tray

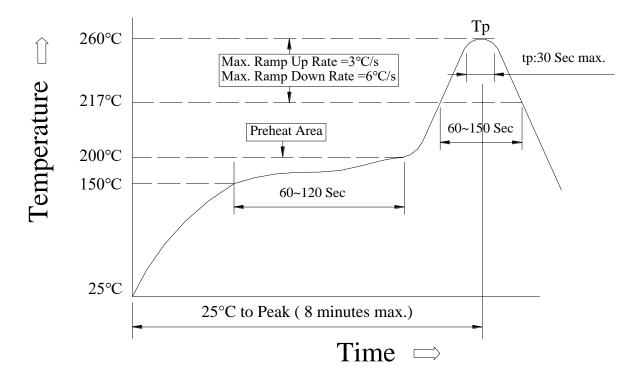
- (1) Description
- (2) Quantity
- (3) Part No.
- (4) Tapping No.

Care Note :

Care note for storage

(1) Chip resistor shall be stored in a room where temperature and humidity must be controlled.

(temperature 5 to 35°C, humidity < 60% RH) However, a humidity keep it low, as it is possible.


- (2) Chip resistor shall be stored as direct sunshine doesn't hit on it.
- (3) Chip resistor shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (chloridation hydrogen, sulfurous acid gas, and sulfuration hydrogen).
- (4) Expiration date: One year after shipping date (product is required to return after expiration date)
- (5) Solderability should be confirmed in case of exceeding 12 months.

Care note for operating and handling

- (1) Protect the edge and coating of the sensors from mechanical stress.
- (2) Avoid bending of printing circuit board (PCB) when cutting and fixing it on support body to reduce mechanical stress on sensors.
- (3) Sensor should be used within the condition of specification. Note: When a voltage higher than specified value is loaded to the sensor, this may damage the sensor material due to temperature rise.
- (4) The loaded voltage should consult terminal temperature of the sensor according to the derating curve.
- (5) When applying a high current exceeding suggested specification (pulse current, shock current) to the sensor, it is necessary to re-evaluate the operating condition before using it in the system.

Recommended Reflow Profile

(1) Reflow Soldering Method :

Reflow Soldering	Tp:255~260°C	Max.30 seconds (tp)
	217°C	60~150 seconds
Pre-Heat	150 ~ 200°C	60~120 seconds
Time 25°C to peak temperature	8 minutes max.	

Reference : JEDEC J-STD-020E